LINEEŸE

LE590-SG User's Manual

< 3rd >

Table of Contents

1. LE5	590-SG Overview	. 3
1.1.	Starting LE590-SG	. 3
1.2.	Operation Menu	.4
1.2.1.	File Sub-menu	.4
1.2.2.	View Sub-menu	. 5
1.2.3.	Statistics Sub-menu	. 5
1.2.4.	Tool Sub-menu	.6
1.2.5.	Language Sub-menu	.6
1.2.6.	Help Sub-menu	.6
1.3.	Tool Bar	.7
1.4.	Configuration and Information Zone	. 9
1.4.1.	System Information	. 9
1.4.2.	Port Status and Configuration	10
1.4.3.	Main Counter	20
1.4.4.	Tx Stream Counter	21
1.4.5.	Rx Stream Counter	22
1.4.6.	Stream Counter Summary	23
1.4.7.	Capture Buffer	25
1.4.8.	Clock Measurement	26
1.4.9.	BERT Test	28
1.4.10.	Router NAT	28
1.4.11.	Low Rate Packet Generation	29
1.5.	Frame Date Edit	30
1.5.1.	Menu	30
1.5.2.	Protocol Quick Select	30
1.5.3.	Data Link layer	31
1.5.4.	Tags	33
1.5.5.	Layer 3 Header	36
1.5.6.	Layer 4 Header	40
1.5.7.	Frame View	44
 Ope 	eration of LE-590TX with LE590-SG	45
2.1.	Hardware connection	45
2.2.	Operation of LE590-SG.	45
2.2.1.	Generate Test Streams to DUT	45
2.2.2.	Capture Specified Packets	47
2.2.3.	View counter of captured packet and others	49

1. LE590-SG Overview

LE590-SG provides a powerful and sophisticated virtual front control panel to manage the LE-590TX. Two test ports can be independently configured with parameters to define multiple streams, filters, and capture capabilities. Traffic for various network protocols can be customized, transmitted, and received on each port. Comprehensive statistics provide users an in-depth analysis of the performance of the DUT (Device Under Test).

1.1. Starting LE590-SG

Connect the LE-590TX to the PC with the included USB cable. Start the program by clicking Start -> Programs -> LINEEYE -> LE-590TX -> LE590-SG Vxxxxx -> LE590-SG Vxxxxx or

LE590-SG.exe at desktop, then main windows is shown.

Please refer to the user guide for LE590-SG installation.

This manual is for LE590-SG v2.0b003 or later. Please use the FPGA version of v2.3b038 or later for the LE-590TX main unit. FPGA upgrade is performed from the LE590-NIC software.

1.2. Operation Menu

1.2.1. File Sub-menu Block in main window: A - 0 × 🖀 LE590-SG File View Statistics Tool Language Help A В 🖲 LINEEŸE O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O D С 00 LE590-SG Clock Measurement Router NAT E Low Rate Packet Generation File View Statistics Tool Lang Load Default Configurations Load Configurations Save Configurations

Exit

LINEEŸE

Menu	Function
Load Defualt Configurations	Reset all settings to default value.
Load Configurations	Load config from a saved file.
Save Configurations	Save the current settings to file.
Exit	Exit and close this utility.

1.2.2. View Sub-menu

File	View	Statistics	Tool	Lan
🗃 🗃	✓ D	iffServ of IP	/4	
Functio	Fu	unction View	8	
0	S	ystem Inform	nation	

Menu	Function
DiffServ of IPv4	Check Diffserv of IPv4 here, the QoS priority settings in the Frame Data Edit window will be DSCP, shown as the upper picture on the left. Uncheck Diffserv of IPv4 here, the QoS priority settings will be ToS, shown as the lower picture on the left. ₀
Function View	Display or hide the "Function View".
System Information	System Information

1.2.3. Statistics Sub-menu

Statistics	Tool	Language	Help
Main	Counter		
Tx Str	eam Co	unter	
Rx Str	ream Co	unter	
Stream	m Count	er Summary	

Menu	Function
Main Counter	You can view counter reports, start/stop packet counts.
Tx Stream Counter	Display of Tx data.
Rx Stream Counter	Display of Rx data.
Stream Counter Summary	Display of test data.

LINEEŸE

1.2.4. Tool Sub-menu

File View Statistics	Tool Language Help
😂 🛃 🗆 🕨 📳	IFG Converter
Function View	Frame Gap for USB Transferring

Menu	Function
IFG Converter	IFG Converter allows the user to converter the frame gap among different units.
Frame Gap for USB Transferring	You can set the gap of packets that will be transmitted back via USB cable per time.

1.2.5. Language Sub-menu

Lar	iguage	Help
4	English	
	简体中国	Ż
	日本語	
	한국어	
	Tiếng \	/iệt

LE-590 provides English, Simplified Chinese, Korean, Japanese, and Vietnamese.

1.2.6. Help Sub-menu

Menu	Function
About	System information, such as Utility version and Hardware version of this device
System Requirements	A " System Requirements " window will pop up and show the requirements for your PC and the FPGA/Firmware of the device.
LINEEYE Web	Access LINEEYE website.

The Toolbar is located below operation menu of this utility Block in main window: **B**

📴 🛃 🗆 🕨 📲 🔡 TE RE 📰 🔂 🕓 🗔 🚥 🗑

Keys	Function
Load Configurations	Select the ".dsc" file you saved before, the system will load the configurations.
Save Configurations	Save the current configuration as the ".dsc" file.
Stop All Ports Transmit	Click this button, the 2 ports will stop transmitting.
Start All Ports Transmit	Click this button, the 2 ports will start transmitting.
Pause or Resume All Ports Transmit	Click this button, the 2 ports will pause or resume transmitting.
Main Counter	You can view counter reports, start/stop transmitting on the Main Counter window.
Tx Stream Counter	Tx Stream Counter allows the user to view the Tx test data of his interest.
Rx Stream Counter	Rx Stream Counter allows the user to view the Rx test data of his interest.
Stream Counter Summary	Stream Counter Summary allows the user to view the test data of his interest.
Capture Buffer	User can set capture buffer criteria or start/stop capturing packets here.
Clock Measurement	You can test the Crystal Oscillator's frequency of the DUT and see if it's either faster or slower than standard speed in ppm scale.
BERT Test	BERT stands for Bit Error Rate Test.
Router NAT	Test the NAT function of the DUT.
Low Rate Packet Generation	A special packet transmit mode for low rate.

1.4. Configuration and Information Zone

Block in main window: C

Control of the second dependence of the s

For different selections, there are System Information, Configuration and Status of Port A, Port B, Report and Function Configuration in this block.

1.4.1. System Information

Click the item below to show the system information

On the right side of the main window, it shows

System Information

Model	LE-590TX
s/N	A 1 34
MAC Address	新生活がいた
PCB Version	MP03
FPGA Version	v2.3b038
Firmware Version	v0.9b030
API Version	v1.0b062

LINEEYE 1.4.2. Port Status and Configuration

Click the item of ports to show the status or configuration

1.4.2.1. Stream Generation

Click item below to view the Multi Streams Generation configuration window.

System shows the configuration window. User can configure the streams patterns for streams generation.

Port A	: Stre	am Gei 🛛 🖉 🗐 🕯	neration Apply	в				
Tx Rate C	ontrol A	uto Genera	te Tx Rate 🛛 🗸 🗸	Stream Transmit	Mode Cor	ntinuous 🗸		
Total Line	Rate(Mb)	ps) 10000	.00 💠 Total	Jtilization(%)	0.0000	🗧 Total Pa	cket Rate(PPS) 148	30952 ‡
	C	D		Frame Davids and			G Rate	
1	Stream #	Select	Length(w/o CRC)	FrancePayloau	Line Rat	e(Mbps)	Utilization(%)	Packet Rate(PPS)
	15		60	All 0	1000	00.00	100.0000	14880952

lcon	ltem	Function
	Load	Load a saved config file from PC
	Save	Save current configuration to a local file
	Set to Default	Set all configuration to default value
E	Add Stream	The Add Stream window will popup
	Delete Stream	Delete the selected stream
Æ	Column View Setting	Set the columns shown or hidden in the list by select the item
Į	Transit SA and SIP to ARP Configuration	Apply the SA and SIP value here to ARP Reply Configuration
📩 Apply	Apply	Apply the current settings

- A: Tx Rate Control:
- **B**: Stream Transmit Mode: There are 3 transmit mode.
 - > Continuous: The stream will be transmitted continuously until user click Stop Transmit button.
 - > Packets Limit: User can set a number that packets will be sent
 - > Time Mode: User can set duration that transmission will be last.
- C: Number of Streams: Volume of streams that will be generated
- D: Select Stream : User can tick the checkbox to active the stream generation of this stream
- E: Length (w/o CRC): Frame length in bytes without CRC
- F: Frame Payload: Select the pattern of the frame
- G: Rate: Select the unit and input the value of the parameter that the packets will be generated.
 - > Line Rate(Mbps): Mbytes per second in transmission
 - > Packet Rate(PPS): Packet per second. Volume of packets that will be generated per second.
 - > Utilization(%):Percentage of Wirespeed transmission

Н Т	K Frame/Gap Contro	ol	X-1	TAG	J	K	L	M
IFG (bit time)	IBG (bit time)	Frames	Enable	X-ID	Append CRC	Error Generation	Frame Data	Protocol Type
96	96	14880952		0		No Error	Edit	None

H: Tx Frame/Gap Control

IFG(bit time): Interframe Gap. Ethernet devices must allow a minimum idle period between transmissions of Ethernet frames. It is called interframe gap (IFG) as the illustration below Frame IFG Next Frame

The minimum interframe gap is 96 bits time or 12 byte time. It is the time taken for transmission of 96 bits raw data on the media.

- > **IBG(bit time)**: Inter Burst Gap. Gap between each burst streams.
- > Frames: Total frames that will be sent

I: X-TAG Enable: User can tick the checkbox to active tag generation of X-TAG. When it is ticked, user can select X-ID. Each X-TAG has an unique ID. If there are more than one product of LE-590TX is generating the data stream on the same network, their X-ID should be different

X-TAG that is used as stream tags for providing fundamental information for collecting statistics of multi-stream traffic. Advanced tests like latency, packet loss, and packet sequence miss can be realized by X-TAG.

X-TAG is an proprietary 12 bytes embedded tag that is located at 49th~60th bytes of each testing frames that are generated by Rapid-Matrix for multi-stream tests.

J: Append CRC: Add CRC checksum to the end of each frame. CRC checksum is the way to verify the

correctness after data transmission. 4 bytes will be added at the end of the frame when CRC checksum is added.

K: Error Generation: User can insert frame errors to the stream.

- > **No Error:** No error frames will be generated.
- > CRC Error: Streams with CRC Error will be generated.
- > IPCS Error: Streams with IPCS Error will be generated.

	Frame Data	
L: Frame Data Edit: Configure the payload contents in frame. Click the Edit contents in frame. For the detail of how to use Frame Editor, please refer to	Edit	to edit the detailed Date Edit
		Frame Data

M: Protocol Type: System shows the Protocol Type when frame content is configured in Edit

N MAC		VLAN L1		1	P IPv4		
DA	SA	Enable	VID	Enable	DIP	SIP	
00-22-A2-00-02-01	00-22-A2-00-02-00		0		192.168.2.1	192.168.2.0	

N: MAC: This field displays the **DA (Destination MAC Address)** and **SA (Source MAC Address)** of the stream. Double-click the **DA** and **SA** of each stream, user can edit the destination/source MAC addresses **O**: VLAN L1: This field allows you to enable/disable the VLAN that will be added into the frames. Click and check the "**Enable**" check box to enable the VLAN function, or uncheck the "**Enable**" check box to disable this function. Also, to set the **VID** (VLAN ID), please input the VID manually in the **VID** field.

P: IPv4: This field displays the **DIP (Destination IP Address)** and **SIP (Source IP Address)** of IPv4 protocol. If user would like to add IPv4 header to the frames, click and check the "**Enable**" check box, then edit the value.

<u> </u>	Q IPv6	IPv6		R тср		S UDP		
Enable	DIP	SIP	Enable	DPort	SPort	Enable	DPort	SPort
	0000:0000:0000:0000:0000:0000:C0A8:0201	0000:0000:0000:0000:0000:0000:C0A8:0200		9	8		9	8

Q: IPv6: This field displays the **DIP (Destination IP Address)** and **SIP (Source IP Address)** of IPv6 protocol. If user would like to add IPv6 header to the frames, click and check the "**Enable**" check box, then edit the value.

R: TCP: This field displays the DPort (Destination Port) and SPort (Source Port) of TCP protocol. If user would like to add TCP header to the packets, click and check the "Enable" check box, then edit the value.
S: UDP: This field displays the DPort (Destination Port) and SPort (Source Port) of UDP protocol. If user would like to add UDP header to the packets, click and check the "Enable" check box, then edit the value.

1.4.2.2. Media Type Setup

Click item below to configure the link mode. Port A and port B has the same configuration items

e- C Por	rt A
	Stream Generation
	Media Type Setup

User can view the media link status or force to run specified media link

Port A : Media Type Setup			×
Port A : Media	Type Setup		
Auto Negotiation M	lode	🗌 Manual Speed Mode	
🗹 10M Half		O Force 10M Full	
🗹 10M Full		Force 100M Full	
🗹 100M Half			
🗹 100M Full			
Link Up/Down	Cable MDI-II/MDI-X Mode		
 Link Down Link Up 	Auto MDIX Force MDI-II Force MDI-X		
Current Speed	O Force MDI-X		
Auto 100M Full			
Note			
Changing settings might	cause Link Status changes and packet	loss.	
	Apply	Cancel	

1.4.2.3. Port Configuration

Click item below to view the Multi Streams Generation configuration window.

The Port Configuration window contains 7 menu tabs.

B. Random Packet Length	
Random Pa	acket Length(w/o CRC)
Minimum	60
Maximum	1514
Random Packet Length (w/o CRC): Set	t the range of the random packet length.

C . 3	X-TAG Offset						
		-X-TAG Offset Tx Offset	49 Bytes	~			
\checkmark	Tx Offset: Set the starting po down menu.	sition of the X-	TAG in the tra	nsmitted p	acket from	the scroll	

Transmit DI		Check Received DI	
🔾 Enable 🔘	Disable	○ Enable	
Data Integrity Illu	stration		
			2 nd level CRC
DA	SA	DATA	FCS
2nd Level CRC, frame from the	an advanced d	lata integrity check function, is the checksum co	omputed based on the contents of the orrupted by DUT and ECS is affected by
the error data, are recorded a	2nd level CRC s error of 2nd L	check will serve as the checksum. Any mismatche evel CRC (Data Integrity) check.	es of transmitted and received packets

E. Elongated Frame Gap	
Elongate	d Frame Gap
Enable	e 🔿 Disable
When this function is enabled and the trans frame gap will be inserted after a certain an loss caused by crystal frequency differentia Frame Gap can compensate crystal frequer	mitting packet flow reaches wirespeed, a 1 byte-time of iount of packets are transmitted. This can reduce packet s between DUT and test instrument. Enabling Elongated ncy differentials by around 30 ppm as simulation.

F .	Packet of USB Burst Transfer			
	Packets of USB Burst Transfer	20 Packets	~	
A	You can set the amount of packets that will be st via USB cable per time.	ored in the captu	re buffer and trans	mitted back

1.4.2.4. ARP Reply Configuration

Port A : ARP Reply Configuration

Port A : ARP Reply Configuration

	- 11		ARP (Address Resolution Protocol)			
-2	Enable	Source Address	Enable	Source IPv4 Address	Gateway	Netmas
1		00-22-A2-00-02-00		192.168.2.0	192.168.2.250	24
2		00-22-A2-00-02-01	\checkmark	192.168.2.1	192.168.2.250	24
3		00-22-A2-00-02-02		192.168.2.2	192.168.2.250	24
4		00-22-A2-00-02-03	\checkmark	192.168.2.3	192.168.2.250	24
5		00-22-A2-00-02-04		192.168.2.4	192.168.2.250	24
6		00-22-A2-00-02-05	\square	192.168.2.5	192.168.2.250	24
7		00-22-A2-00-02-06		192.168.2.6	192.168.2.250	24
8		00-22-A2-00-02-07		192.168.2.7	192.168.2.250	24
9		00-22-A2-00-02-08		192.168.2.8	192.168.2.250	24
10		00-22-A2-00-02-09		192.168.2.9	192.168.2.250	24
11		00-22-A2-00-02-0A		192.168.2 <mark>.1</mark> 0	192.168.2.250	24
12		00-22-A2-00-02-0B	\square	192.168.2.11	192.168.2.250	24
13		00-22-A2-00-02-0C		192.168.2.12	192.168.2.250	24
14		00-22-A2-00-02-0D		192.168.2.13	192.168.2.250	24
15		00-22-A2-00-02-0E		192.168.2.14	192.168.2.250	24
16		00-22-A2-00-02-0F	\checkmark	192.168.2.15	192.168.2.250	24
17		00-22-A2-00-02-10		192.168.2.16	192.168.2.250	24
18		00-22-A2-00-02-11	\checkmark	192.168.2.17	192.168.2.250	24
19		00-22-A2-00-02-12		192.168.2.18	192.168.2.250	24

ARP, namely address resolution protocol, is a TCP/IP protocol to obtain the MAC address based on the IP address.

You can assign multiple MAC address and IP address pairs to one port. As long as the IP address in the ARP request fits one of the assigned pairs, the port will response the ARP request.

To assign a specific MAC address and IP address pair to the port, check the corresponding line in the most left **Enable** column.

Meanwhile, you must enable the ARP according the type of the IP address by check the corresponding line in the ARP **Enable** column.

Each port can simulate 24 MAC/IP pairs.

1.4.2.5. Stream Counter Setting

Stream Counter Mode		
A Rule	Base on X-TAG	~
B Block Size	10	*
C Begin Stream X-ID	0	•

- A: Rule: The stream counter will be counted base on the selection.
- B: Block Size: The count of stream counter will be counted.
- **C**: This area will display different content according to different rule.

1.4.2.6. Capture Criteria

Click item below to view the Capture Criteria configuration window.

System shows the configuration window. Users can configure the criteria that they want to capture, from protocol or SDFR aspects

- Protocol
- Different protocols can be combined as unique criteria

Port A : Capture Criteria

Protocol SDFR Result

MAC	C Network	Protocol
Broadcast	Ethernet-II BPDU	П ТСР
Multicast	ARP None IPv4	
Unicast	□ IPv4 □ IPv4 with Extension Header	FTP
VLAN	IPv6 IPv4 Checksum Error	RTP
CRC Error		OSPF
Over Size		RSVP
Under 64 Bytes	IGMP	
Pause	SNAP SNAP	
X-TAG Packet Length Filter(with	CRC)	
Filter Length(Bytes)	= ~ 64	

A: Capture all packets: All packets are captured and sent to PC by USB port. Be attention that packet loss is possible if the captured traffic is higher than traffic allowed for USB port.

B: MAC: MAC based criteria. Packets with MAC events in the list is captured and sent to PC by USB port.

C: Network: Network events criteria. Packets with network events in the list is captured and sent to PC by USB port.

D: Protocol: Protocol Type criteria. Packets with protocol type in the list is captured and sent to PC by USB port.

E: X-TAG: X-TAG is an proprietary 12 bytes embedded tag that is located at 49th~60th bytes of each testing frames that are generated by Rapid-Matrix for multi-stream tests.

F: Packet length filter: Capture packet (frame) length in specified range of length

G: Set the count of capture packets.

• SDFR:

- SDFR (Self-Discover Filtering Rules) is a technique that make capture of Ethernet easy and convenient.
- User-friendly interface that the value such as source IP, destination IP and other criteria for capture and filter can be input directly without calculating mask.
- SDFR value for capture or filter includes several network event (such as DA, SA, DIP...), varied length of frame (oversized, undersized) and varied of frame/packet type (CRC error, IP checksum error...).
- Value of SDFR can be a unique value or a range of values between specified values. All packets that fit the value are captured
- Multiple filter condition can be activated easily by just clicking different options.
- Displays captured packet in real-time while network is still running.
- · Value of SDFR and filter criteria can be changed dynamically during capture procedure.

Port A : Capture Criteria

Protocol SDFR Result A		В	С		D	
DA	~	DA	Single	~	00 - 00 - 00	- 00 - 00 - 00
SA						
VID		SA	Single	~	00 - 00 - 00	- 00 - 00 - 00
DIP		VID	an ala		0	
SIP		VID	Single	~	0	
DPort		DIP	Sinale	~	0 - 0 -	0 . 0
SPort				_		
DA & SA		SIP	Single	~	0 - 0 -	0 . 0
DA & SA & VID		DBort	Cinala	- 227	0	
DA & DIP		DPOIL	Single		0	
DA & SIP		SPort	Single	1	0	4
SA & DIP			- Parameter			
SA & SIP		Classe				
DIP & SIP		SDER	• Solf I	Discove	r Filtering Rul	oc
DIP & DPort		DA	. Dorti	nation	MAC Address	
DIP & SPort		SA.	Sour		^ Addroce	
SIP & DPort		VID	VIAN		- Huuress	
SIP & SPort			Docti	nation	ID Addross	
DIP & SIP & DPort		CID.	Sour		ddroes	
DIP & SIP & SPort		DRod	- Docti	nation	Dort	
DIP & SIP & DPort & SPort	4	SDort	- Desu	nacion	-	
<	>	54010	. 5000	Le POR	5	

A: SDFR items: User can tick the items that act as criteria. When user ticks one option, some other options will be gray. It means the option what user tick has covered the range of those options in gray.
 B: Pattern

- DA: Destination MAC address
- SA: Source MAC address
- VID: VLAN ID that follows 802.11Q standard
- DIP: Destination IP address
- SIP: Source IP address
- DPort: Destination port of IP address
- SPort: Source port of IP address
- **C**: Pattern Mode: Select a pattern (Single, Pair, Range) to cover the value of criteria items.
- **D**: Patterns: The unique value or range of values specified as the capture criteria of criteria items. For example, user wants to capture packets with VLAN ID 1 to 10.

Protoc	ol SDFR Result		
	DA	^	
	SA		
	VID		
	DIP		
VID	Range ∨ 1 🔺 ≼ VID	<	10

LINEEYE 1.4.3. Main Counter

1.4.0. Main Counter

Click item below to view the Main Counter window.

ARP Reply Configu	🏭 LE59	0-SG				
Stream Counter Se	File	View	Statistics	Tool	Language	Help
Main Counter	🗃 🖬		00	TE R	I II 🔒 🗅	
Tx Stream Counter	Function	View		Vlain Co	unter	Ρ×
R Rx Stream Counter	00	i i	72		Junter	

Control button of this window can control packet generation and receiving, and also view the result counter.

Main Counter

1	A	В	C	D ^	All Linke	d Ports
1	Port	Port A	Port B	Total:2 Ports	Transmit	
2	Module	NuDOG-802	NuDOG-802	-2	Contracting	
3	Link	Link Up	Link Up	28	Capture	
4	Speed	Auto 10G Full	Auto 10G Full		Port A	
5	Tx Packets	0	0	0	Transmit	
6	Tx Bytes	0	0	0	Contura	
7	Tx Packet Rate	0	0	0	capture	
8	Tx L2 Payload Rate(Mbps)	0.00	0.00	0.00	Port B	
9	Tx Datagram Rate(Mbps)	0.00	0.00	0.00	Transmit	
10	Tx Line Rate(Mbps)	0.00	0.00	0.00	Canture	
11	Tx Utilization(%)	0.00	0.00	0.00	capcare	
12	Rx Packets	0	0	0		
13	Rx Bytes	0	0	0		
14	Rx Packet Rate	0	0	0		
15	Rx L2 Payload Rate(Mbps)	0.00	0.00	0.00		
16	Rx Datagram Rate(Mbps)	0.00	0.00	0.00		
17	Rx Line Rate(Mbps)	0.00	0.00	0.00		
18	Rx Utilization(%)	0.00	0.00	0.00		
19	🗄 Collision Packets(Sum)	0	0	0		
24	Error Packets(Sum)	0	0	0		
31	Packet Size Statistics (Sum)	0	0	0		
40	Eaver2 Packets(Sum)	0	0	0		
	in Matural I war Dackata (Sum)	0	0	° *		

Tool Bar

Icon	ltem	Function
	Save Main Counter Data	Save current data of counters to Excel file
000	Clear All	Clear all counters to 0
()	Hide Zero Counters	If all the counters of this row are 0, this row will be hidden until the value changed
	Column Width Setting	Set column's width by input the value
Ø	Row View Setting	Set the rows shown or hidden in Main Counter window by select the item
-	Send Learning Packets	The linked port will transmit some learning packets
	Float Counters Window	The Main Counter window will popup

Counter with \pm mark is expansible. Please click the \pm mark

Ę	Error Packets(Sum)
	····· Dribble Bits
	Alignment Error
	CRC Error
	DI Error
	····· IP Checksum Error
	BERT Error

Error Packets(Sum)

Operation

All Linked	Ports
Transmit	
Capture	
Port A	
Transmit	
Capture	
Port B	
Transmit	
Capture	

This option can activate Transmit or Capture of port A, port B or port A + B individually.

Button	Function
	Stop complete procedure of transmitting or capturing
	Start to transmit or capture procedure
11	Pause transmitting or capturing procedure. System still measure the statistics counter, however, the counter value is static for user to watch the status when user click the III button. When user click again, the counter status resume to real status instantly. Click this button does not affect the real counters values.

1.4.4. Tx Stream Counter

Click item below to view the Tx Stream Counter window.

O	🧱 LE590-SG	
Main Counter	File View Statistics	Tool Language Hel
R Rx Stream Counter	Function View	Tu Straam Counter
Stream Counter Summar Of	i di di	[ix stream counter]

LINEEYE

Tx Stream Counter

000	-	
000	100	hand .

000				
	A1	• = ^s	tream #	
- 24	A	В	С	D
1	Stream #	Packets	Bytes	X-ID
2	1	29,760	1,904,640	
3	2	29,760	1,904,640	
4	3	29,760	1,904,640	
5	4	29,760	1,904,640	
6	5	29,760	1,904,640	
7	6	29,760	1,904,640	
8	7	29,760	1,904,640	
9	8	29,760	1,904,640	
10	9	29,760	1,904,640	
11	10	29,760	1,904,640	

Icon	ltem	Function
	Save Tx Stream Counter Data	Save current data of counters to Excel file
000	Clear (All)	Clear stream counters to 0 for 2 ports or single port.
	Start (All Ports) Transmit	Start Tx Stream Counter of 2 ports or single port.
-	Stop (All Ports) Transmit	Stop Tx Stream Counter of 2 ports or single port.
()	Hide Zero Counters	If all the counters of this row are 0, this row will be hidden until the value changed.
Ø	Column View Setting	Set the column shown or hidden in the window by select the item

a.

1.4.5. Rx Stream Counter

Click item below to view the Rx Stream Counter window.

	EE590-SG	
Main Counter Tx Stream Counter Du Stream Counter	File View Statistics Too	Language Help R 🗄 🔀 🏠 🗔 🚥
Stream Counter Summan	Function View	4 x
Capture Buffer Or	i a a	Rx Stream Counter

Rx	Stream	Counter	

000 🕨 🗆

Port A	Port B	
Port A	Port B	

1	H	000	000 MAX MIN			Ģ.		狙	
---	---	-----	-------------------	--	--	----	--	---	--

	A1 -	= X-ID #				
- 1	A	В	с	D	E	F
1	V ID #	Line Date(Mhoe)	Dackata	Putas		Loss Event
2	X-10 #	Life Rate(MDps)	Packets	bytes	Loss Event	First Loss Event Time
3	0	0.00	0	0	0	1
4	1	0.00	0	0	0	24
5	2	0.00	0	0	0	12
6	3	0.00	0	0	0	32
7	4	0.00	0	0	0	13
8	5	0.00	0	0	0	2
9	6	0.00	0	0	0	1
10	7	0.00	0	0	0	54 14
11	8	0.00	0	0	0	13 1
12	9	0.00	0	0	0	×
13						

Icon	Item	Function
	Save Rx Stream Counter Data	Save current data of counters to Excel file
000	Clear (All)	Clear stream counters to 0 for 2 ports or single port
000 MIN	Clear All Maximum/Minimum Latency	Clear maximum and minimum latency.
	Start (All Ports) Transmit	Start Tx Stream Counter of 2 ports or single port.
	Stop (All Ports) Transmit	Stop Tx Stream Counter of 2 ports or single port.
()	Hide Zero Counters	If all the counters of this row are 0, this row will be hidden until the value changed
Æ	Column View Setting	Set the column shown or hidden in the window by select the item
細	Stream Counter Setting	The Stream Counter Setting window will pop up if you press this button.

1.4.6. Stream Counter Summary

Click item below to view the Stream Counter Summary window.

	E590-SG
R Stream Counter	File View Statistics Tool Language Help
Clock Measurement	Function View Stream Counter Summary

User can make stream counter settings here to view the data receiving items of their interest. The dynamic statistics will be displayed here in a table form.

Stream Counter Summary

📕 000 200 🕨 🕨 🗆 💵 🚺 🍎 語 🗷 📳

1	A	В	C	D	E	(F)
1 2	Port	Condition	Tx Packets	Tx Bytes	Rx Line Rate(Mbps)	Rx Packets
3	Port A	Tx Stream # : 1	0	0	1	
4	Port A	Tx Stream # : 2	0	0	(*)	
5	Port A	Tx Stream # : 3	0	0	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
6	Port A	Tx Stream # : 4	0	0	5 -	
7	Port A	Tx Stream # : 5	0	0	1	
8	Port A	Tx Stream # : 6	0	0		
9	Port A	Tx Stream # : 7	0	0		
10	Port A	Tx Stream # : 8	0	0		
11	Port A	Tx Stream # : 9	0	0	-	
12	Port A	Tx Stream # : 10	0	0		
13	Port A	Rx X-ID # :0	-	1 <u>1</u>	0.00	
14	Port A	Rx X-ID # :1	-	-	0.00	
15	Port A	Rx X-ID # : 2	-	1	0.00	
16	Port A	Rx X-ID # : 3	-	-	0.00	
17	Port A	Rx X-ID # : 4	-	6 <u>1</u>	0.00	
18	Port A	Rx X-ID # :5	-	:-	0.00	
19	Port A	Rx X-ID # :6		12	0.00	
20	Port A	Rx X-ID # :7	-	:-	0.00	
21	Port A	Rx X-ID # :8	-	12	0.00	
22	Port A	Rx X-ID # : 9	-	5-	0.00	
	D-+D	THE OWNER AND A	202 610 040	10 047 010 500		

Icon	Item	Function
	Save Stream Counter Data	Save current data of counters to Excel file
000	Clear (All)	Clear stream counters to 0 for 2 ports or single port
000 MÍN	Clear All Maximum/Minimum Latency	Clear maximum and minimum latency.
	Start All Ports Transmit	Start Tx Stream Counter of 2 ports.
	Stop All Ports Transmit	Stop Tx Stream Counter of 2 ports.
ų	Assign Port Map	This button allows user set the ports which they want to view. Only the statistics of the selected ports will be displayed.
	Stream Map Setting	This button allows user set the streams which they want to view. Only the statistics of the selected streams will be displayed.
()	Hide Zero Counters	If all the counters of this row are 0, this row will be hidden until the value changed
8	Row View Setting	A Row View Setting window will pop up if you press this button. Check the items you want to view here, then the checked item will be listed as a row
Ø	Column View Setting	A Column View Setting window will pop up if you press this button. Check the items you want to view here, then the checked item will be listed as a column.
∎t	Sort Rows	Sort the ports in a ascend trend according to the port ID and Stream ID. This helps the user quickly set the ports in order when the port sequence is messed manually.

Click item below to view the Capture Buffer configuration window.

To view the contents of captured packets, user can select the captured packets from Capture Buffer window

000															
Port A F	Port B														
000	P [1 🖉													
Captured	1:4	Α													
B 🖌	Delt	a Tim	e(µs)		Len	th(wit	h CRC)			DA		SA		VID	
1		0				64			00-22-/	A2-00-02-00	00-22	-A2-00-02-0	1	n/a	
2		6.72				64			00-22-/	A2-00-02-00	00-22	-A2-00-02-0	1	n/a	
3		6.72				64			00-22-/	A2-00-02-00	00-22	-A2-00-02-0	1	n/a	
4		6.72				64			00-22-/	A2-00-02-00	00-22	-A2-00-02-0	1	n/a	
د															
< Ether Di Di Di Si	met II, estinati	Src: ion: 0 00:22	00:22 0:22:: 2:2:0	:a2:0)0:02:):02:0	01 (00 0 (00: 0:22:a):22:a2: 22:a2:0 22:00:02	00:02	2:01), 2:00)	Dst: 00:2	2:a2:00:02	:00 (00:22	2:a2:00:0	02:00)	
< Ether Dr C C C C C C C C C C C C C	net II, estinati purce: ype: IP net Pro ersion: eader l	Src: ion: 0 00:22 (0x0 toco 4 ength	00:22 0:22:: 2:a2:0 800) Versi 1: 20 1	:a2:0 a2:00 0:02 on 4)0:02:):02:0 :01 (0 , Src:	01 (00 0 (00: 0:22:a 192.10):22:a2: 22:a2:0 2:00:0 68.2.1 (00:02 0:02 2:01)	2:01), 2:00)) .168.2	Dst: 00:2: .1), Dst: 1	2:a2:00:02 92.168.2.0	::00 (00:22) (192.168	2:a2:00:(.2.0)	02:00)	
< The second sec	rnet II, estinati ource: ype: IP net Pro ersion: eader k	Src: ion: 0 00:22 (0x0 otoco 4 ength	00:22 0:22:: ::a2:0 800) Versi :: 20 I	:a2:0 a2:00 0:02 on 4 oytes 04	00:02: 0:02:0 :01 (0 , Src: 05 0	01 (00 0 (00: 0:22:a 192.10 6 07	0:22:a2: 22:a2:0 22:00:0: 58.2.1 (08 09	00:0 0:02 2:01) (192	2:01), 2:00)) .168.2	Dst: 00:2: .1), Dst: 1 C OD OE (2;a2:00:02 92.168.2.(F	::00 (00:22) (192.168	2:a2:00:(.2.0)	02:00)	
< Ether Do Sc Sr Tr Tr H H D000000000000000000000000000000000000	rnet II, estinati purce: ype: IP net Pro ersion: eader le 00 00	Src: ion: 0 00:22 (0x0 toco 4 ength 01 1 22 4	00:22 0:22: 2:a2:0 800) Versi 1: 20 1 12 03 22 00	:a2:0 a2:00 0:02 on 4 oyte: 04 02	0:02: 0:02:0 :01 (0 , Src: 05 0 00 0	01 (00 0 (00: 0:22:a 192.10	0:22:a2: 22:a2:0 2:00:00 58.2.1 (08 09 A2 00	00:0 0:02 2:01) (192	2:01), 2:00)) .168.2	Dst: 00:2: .1), Dst: 1 C 0D 0E (8 00 45 (2:a2:00:02 92.168.2.(F 0	::00 (00:22) (192.168	2:a2:00:(.2.0)	02:00)	
< Ether Ether Ether E O	rnet II, estinati purce: ype: IP net Pro ersion: eader le 00 00 00 00 02	Src: ion: 0 00:22 (0x0 toco 4 ength 22 2 2 1 0 0	00:22 0:22:: 2:a2:0 800) Versi 1: 20 I 12 03 12 03 12 03 12 03 12 03	:a2:0 a2:00 0:02 0n 4 0yte: 04 02 00 00	0:02: 0:02:0 :01 (0 , Src: 05 0 00 0 00 4 00 0	01 (00 0 (00: 0:22:a 192.10 6 07 0 22 0 FF 0 00):22:a2: 22:a2:0 :2:00:03 68.2.1 (08 09 A2 00 F4 7F 00 00	000:00 00:02 2:01) (192. (192. 0A 0 02 5 C0 0 00	2:01), 2:00) 168.2 08 0(01 08 A8 02 00 0(Dst: 00:22 .1), Dst: 1 C 0D 0E 0 8 00 45 0 2 01 C0 4 0 00 00	2:a2:00:02 92.168.2.0 F 0 2"¢. 80	::00 (00:22) (192.168 " ¢ @v ő.À	2:a2:00:(.2.0)	02:00)	,

Icon	ltem	Function
-	Save as Pcap	Save the captured packets to pcap file
000	Clear	Clear current captured packets
	Start Capture	Start to capture procedure
	Stop Capture	Stop complete procedure of capturing
8	Capture Criteria	Set column's width by input the value

- A: The count of captured packets
- B: The list of all captured packets, and summary of network items
- C: Frame view of selected packet
- D: The contents of selected packet

1.4.8. Clock Measurement

Click item below to view the Clock Measurement window.

This device is equipped with high precision 1 ppm temperature-compensated oscillator that can generate precise speed network streams to DUT, or measures the speed rate of DUT's oscillator for speed control of network streams.

By using this application software, operator is able to measure oscillator's speed of DUT that is either faster or slower than standard speed in ppm scale, or use it as criteria to judge the result of test.

Icon	Item	Function
-	Save	Save the data in the chart to csv file
	Load	Load the data from a csv file
000	Clear Chart Values	Clear current test value
	Start Testing	Start current port to test
	Stop Testing	Stop current port's procedure of testing
	Start Testing All	Start all ports to test
	Stop Testing All	Stop all port's procedure of testing

A: Select Port: Select port that connect to DUT for test.

- **B**: Hz: Hz scale in this curve graph.
- **C**: Elapsed Time(s): Time (second) scale in this curve graph.
- D: MHz: The frequency of Quartz Oscillator.

E: ppm: faster (+) or slower (-) then standard speed. For example, +20 means 20ppm faster then standard speed

- **F**: Time: The time of the value detected.
- G: Current: Current detected value.
- H: Maximum: Maximum value of MHz or ppm during the test.
- I: Minimum: Minimum value of MHz or ppm during the test.
- J: Result: The test result in ppm.
- K: Standard: Standard value for reference.
- L: Mode (Speed): Select network speed that user wants to test the DUT.
- M: Test Time(s): Configure the duration of the test.

LINEEYE 1.4.9. BERT Test

BERT	Test				- D	Х
EF	RT Test					
	🗟 000 🍝 🕨					
onfig	uration Report	t				
Port	Map Port A <	<-> Port B ~	Length(w/o CRC) 1	.512 🗧 (multir	ple of 4)	
Tran	smit Mode Co	ntinuous 🗸 Tx Tin	ne(s) 10 🗘	Tx Packets 1000		
Z E	nable Learning	Learning Packets) 🌻 IFG (bit t	time) 64000 🛟	Delay Time After Learning (s) 1 🔭 Tx Packets Timeout (s) 5	-
	Port	DA	SA	Utilization(%)		
1	Port A	00-22-A2-00-02-01	00-22-A2-00-02-00	100.00		
2	Port B	00-22-A2-00-02-00	00-22-A2-00-02-01	100.00		
lote .Th	BERT pattern	used here is PRBS, and	l its number of eleme	ents is 2^31-1.		

BERT stands for **Bit Error Rate Test** LE590-SG uses 2^31-1 number of elements to generate BERT pattern, LE590-SG will check if BERT patterns are in received packets.

1.4.10. Router NAT

Router NAT is specially used when the DUT is a router. This function provides complete configuration information for testing the routers, which greatly facilitate the configuration work. The settings areas are divided into two types, the white areas and the gray areas. The content in the white area can be configured as the user's expectations while the content of the gray area is automatically obtained after running this function.

	Port	Connection Type	Skin DHCP if Valid	DHCP Time	out(s)	Source MAC	Source	TP	
Ē	WAN	DHCP		100	000(0)	Auto Detect	Auto De	tert	
	LAN	DHCP	n/a	100		Auto Detect	Auto De	tect	
trur	nent Settin	g							
4	Port	Connect to Router	Source MAC	VLAN	VID	Source I	P UDF	9 SPort	Mapping
		WAN	00-22-A2-00-02-00		0	Auto Dete	ct 8	000	n/a
Po	DIT A								
Po	ort A ort B	LAN	00-22-A2-00-02-01		0	Auto Dete	ct 8	000	Auto Dete
Po	ort B	LAN	00-22-A2-00-02-01		0	Auto Dete	ct 8	000	Auto Detect
Po	ort B	LAN	00-22-A2-00-02-01		0	Auto Dete	ct 8	000	Auto Detect
Po	ort B	LAN	00-22-A2-00-02-01		0	Auto Dete	ct 8	000	Auto Detect
Po	ort B	LAN	00-22-A2-00-02-01		0	Auto Dete	ct 8	000	Auto Detect
Po	ort B	LAN	00-22-A2-00-02-01		0	Auto Dete	ct 8	000	Auto Detect

lcon	ltem	Function
	Set to Default	Set all the values to the default
000	Clear	Clear the test result
	Start	Start running the Router NAT function
*	Set to Stream	The settings here will be applied to the packet settings of the stream by clicking this button. User can check the result by view Stream Generation .
0	Keep Alive	With Keep Alive button activated, the system will transmit low flow data by correct configuration to ensure the smoothness of the link. If the correct configuration is not yet obtained, no actions should be taken.

1.4.11. Low Rate Packet Generation

A special packet transmit mode for low rate. There are 4 entries, every entry can send 1 packet per second at most.

rt A p	ort B								
ê 🔒 🖡	🗟 000 🕨 🗆	1							
	A	B		D	Desta sel Turs	FM	AC	G	H
	stop/start	Allds	Length(w/o CRC)	Frame Data	Protocorrype	DA	SA	Interval(s)	Packet CO
1		LRPG 1	60	Edit	None	00-22-A2-00-02-01	00-22-A2-00-02-00	1	5
2		LRPG 2	60	Edit	None	00-22-A2-00-02-01	00-22-A2-00-02-00	1	5
3		LRPG 3	60	Edit	None	00-22-A2-00-02-01	00-22-A2-00-02-00	1	7
		LRPG 4	60	Edit	None	00-22-A2-00-02-01	00-22-A2-00-02-00	1	7
4	ind F								
7									

A: Stop/Start: Stop or Start transmission.

B: Alias: Alias of this entry.

C: Length (w/o CRC): Frame length in bytes without CRC

D: Frame Data Edit: Configure the payload contents in frame. Click the **Edit** to edit the detailed contents in frame.

E: Protocol Type: System shows the Protocol Type when frame content is configured in Frame Data.

F: MAC: MAC: This field displays the **DA (Destination MAC Address)** and **SA (Source MAC Address)** of the stream. Double-click the **DA** and **SA** of each stream, user can edit the destination/source MAC addresses.

- G: Interval(s): The interval the packets will be sent.
- H: Packet Count: The count of the packets has been sent.

1.5. Frame Date Edit

To create the pattern and contents of the streams what user want to generate, the utility has Frame Data Edit function to create what user want.

Click E Stream Generation system shows

Port A	: Stream	Generatio	n				
Tx Rate C	Control Auto	Generate Tx Rate	~	Stream Transmit Mo	ode Continuous	5 🗸	
Total Line	Rate(Mbps)	10000.00	Total U	tilization(%) 100.0	000 🗘 To	tal Packet Rate(PF	s) 14880952
(ol	X-TA	G	Annual CDC	E. C. LUN	5	Purtue 17
	Frames	Enable	X-ID	Append CRC	Error Generation	Frame Data	Protocol Ty
	14880952		D		No Error	Edit	None

Configure related parameters, then user can click Edit to edit the detailed contents in frame.

1.5.1. Menu

Frame Data Edit

🖻 🛃 🔄

lcon	ltem	Function
1	Load	Load a pcap file from PC to generate the same stream.
—	Save	Save the configuration to a pcap file.
	Set to Default	Set frame data to default value.
1st	Transfer Protocol to User Defined	Base on the protocol which user selected, user can edit the data by themselves.

This window shows all frame type that is configurable. User can also import user-defined file (*.pcap of Ethereal or Wireshark) for test directly.

1.5.2. Protocol Quick Select

This Frame View window shows the frame structure of the frame that user want to edit.

Ethemet II IP	/4 UDP Frame Vi	ew			
Oata Link Layer	Layer 3 Protocol		Layer 4 Prot		Layer 5 Protocol
 Ethernet II 	 IPv4 	O PPPoE Session	ОТСР		O DHCP
O Ethernet SNAP	O IPv6	O GOOSE	O UDP	O VRRP	O DHCPv6
0 802.2	O ARP	⊖ sv	O ICMP	O ISIS over IP	○ RIP
O User Defined	O TRILL	O LLDP		O MPLS in IP	○ LISP
/LAN	O ISIS	O PTPv2	O ICMPv6		
◉ None		O CFM	O IPv4 in I	P	
) VLAN	◯ IPX	⊖ FCoE	O IPv6 in I	P	
	O BPDU	○ FIP	○ RSVP		
Nona O MOLE Unicort	O MAC Control	○ ECP			
O 3Com XNS O MPLS Unicast	O SLOW	O LOOP	O OSPFv2		
te					
te					

1.5.3. Data Link layer

Data Link Layer type of streams generation

Data Link layer: The Data Link Layer is Layer 2 of the seven-layer OSI model of computer networking. The Data Link Layer protocols respond to service requests from the Network Layer and they perform their function by issuing service requests to the Physical Layer. Several protocols options can be chosen for the test.

1.5.3.1. Ethernet II

Ethernet II: The most common Ethernet protocol currently used on LAN

Data Link Layer		
 Ethernet II 		
O Ethernet SNAP		
0 802.2		
O User Defined		

User can configure the MAC address of DUT.

Destination Address (DA): Default: FF:FF:FF:FF:FF;FF; means broadcast frame. To use variation of DA

function, this MAC address is the start MAC address

Source Address (SA): Default: 00:00:00:00:00:00, means the MAC address of this device itself. To use

variation of SA function, this MAC address is the start MAC address

1.5.3.2. Variation of DA, SA and VID

The DA and SA is variable if increase or decrease selection is selected DA, SA of Default Multi Streams generation is fixed

Port A : 🖻 🖬 🕏	Stream	m Gener: E 🚝 🕍 Ap	a tion ply					
Tx Rate Co	ntrol Aut	o Generate T	∝Rate ∨	Stream Trans	mit Mode C			
Total Line F	Rate(Mbps)	10000.00	🗢 Total	Utilization(%)	100.0000	Total Packet Rate(PPS) 148805	352 <u>-</u>	000120
			UDP			HV-DA		HV-SA
- 4	SPort	Enable	DPort	SPort	Mode	Range	Mode	Range
	8		9	8	Fixed	00-22-A2-00-02-01	Fixed	00-22-A2-00-02-00

User can click the selection and change it to increase or decrease and also specify a range of variation as the example below

	HV-DA		HV-SA
Mode	Range	Mode	Range
Increase	00-22-A2-00-02-00 ~ 00-22-A2-00-02-FF	Increase	00-22-A2-00-02-00 ~ 00-22-A2-00-02-FF

Assume that the DA is 00-00-21-5C-0A-22

- When increase mode is selected, the last 2 hexdecimal digits will be 22, 23, 24...till the counts of the range.
- When decrease mode is selected, the last 2 hexdecimal digits will be 22, 21, 20...till the counts of the range.

LINEEŸE

1.5.3.3. IPX

IPX: Internetwork Packet Exchange (IPX) is the OSI-model Network layer protocol in the IPX/SPX protocol stack. The IPX/SPX protocol stack is supported by Novell's NetWare network operating system.

Layer 3 Protocol	
O None	O PPPoE Discovery
○ IPv4	O PPPoE Session
O IPv6	⊖ GOOSE
○ ARP	⊖ sv
⊖ TRILL	
\bigcirc isis	O PTPv2
	○ CFM
● IPX	
O BPDU	○ FIP
O MAC Control	O ECP
O SLOW	O LOOP

This editor of IPX will added if required.

1.5.4. Tags

When Ethernet II of Data Link Layer is selected, extra tag options is available.

When Ethernet II is selected, Tags option is enabled.

Data Link Layer	
O None	
Ethernet II	
O Ethernet SN	IAP
0 802.2	
O User Define	d
VLAN	
● None ○ Q	2-in-Q
Tags	
None	O MPLS Unicast
O 3Com XNS	O MPLS Multicast

VLAN		
O None	○ Q-in-Q	
● VLAN		

A virtual LAN, commonly known as a VLAN, is a group of hosts with a common set of requirements that communicate as if they were attached to the Broadcast domain, regardless of their physical location. The protocol most commonly used today in configuring virtual LANs is IEEE 802.1Q.

IEEE 802.1Q adds a 32-bit field between the source MAC address and the EtherType/Length fields of the original frame. The VLAN tag field has the following format:

VLAN Tag in Ethernet Frame

To configure the VLAN for streams generation, click the VLAN Tab

Protocol Quick Select	Ethernet II	VLAN	Frame View		
VLAN L1 Parameter	s				
User Priority	CFI		VID		
0 ~	0 - Reset	~	0	•	VLAN L2
- VLAN L2 Parameter	s				
User Priority	CFI		VID		
0 🗸	0 - Reset	4	0	*	VLAN L3
- VLAN L3 Parameter	s				
User Priority	CFI		VID		
0 ~	0 - Reset	~	0		

User priority (also called COS, class of service) and VID are most common parameter for the test

1.5.4.2. Q-in-Q

VLAN		
○ None	● Q-in-Q	
O VLAN		

IEEE 802.1ad (Provider Bridges) is an amendment to IEEE standard IEEE 802.1Q-1998 and it is called O in O or Stacked VI ANa

Q-in-Q or Stacked VLANs

Source MAC	EtherType/ Size	PayLoad	CRC / FCS		Int
1 2 3 4 5 6	1 2 1	n	1 2 3 4	1 2 3 4	5
		n=4	6-1500		
Source MAC	802.1Q Ta	EtherType/ g Size	PayLoad	CRC / FCS	
1 2 3 4 5 6	1 2 3	4 1 2 1	n	1 2 3 4	1
	TPIB-0x8100 PCP/	CFI/VID	n=46	-1500	
Source MAC	802.1Q Outer MetroTag / PE-	Tag / VLAN 802.1Q Inne	EtherType/ rTag Size	PayLoad	
1 2 3 4 5 6	1 2 3 TPID=0x9100 PCP/ 9200/9300	4 1 2 3 (CFI/VID TPID=0x8100 PCI	4 1 2 1 VCFIVID	n n=46-	1 -1500

To configure the Q-in-Q for streams generation, click the Q-in-Q Tab

Ether Type (Hex)	User Pr	User Priority			VID	
88:A8	0		∨ 0 - Reset	~	0	•
C-Tag	Lines De	in sile .	CET		L/TD	
Ether Type (Hex)	User Pr	ioricy	CFI		VID	-
81:00	0		✓ 0 - Reset	~	0	Ē

In computer networking and telecommunications, Multiprotocol Label Switching (MPLS) refers to a mechanism that directs and transfers data between Wide Area Networks (WANs) nodes with high performance, regardless of the content of the data. MPLS makes it easy to create "virtual links" between nodes on the network, regardless of the protocol of their encapsulated data.

MPLS works by prefixing packets with an MPLS header, containing one or more 'labels'. This is called a label stack. Each label stack entry contains four fields:

> A 20-bit label value.

➤ A 3-bit Traffic Class field for QoS (Quality of Service) priority (experimental) and ECN (Explicit Congestion Notification).

> A 1-bit bottom of stack flag. If this is set, it signifies that the current label is the last in the stack.

> An 8-bit TTL (time to live) field.

	MPLS Label	Experiential Use	Time to Live	
abel # 1	0	0	0	

1.5.5. Layer 3 Header

In the payload of frame, layer 3 header as the items below is configurable

Layer 3 Protocol	
None	O PPPoE Discovery
○ IPv4	O PPPoE Session
O IPv6	O GOOSE
	⊖ sv
\bigcirc isis	O PTPv2
	◯ CFM
	O FCOE
O BPDU	⊖ FIP
O MAC Control	O ECP
O SLOW	O LOOP

Layer 3 Protocol	
O None	O PPPoE Discovery
IPv4	O PPPoE Session
O IPv6	◯ GOOSE
	⊖ sv

IPv4

IPv4: Internet Protocol version 4 (IPv4) is the fourth revision in the development of the Internet Protocol (IP) and it is the first version of the protocol to be widely deployed.

The structure of IP header is illustrated below

bit offset	0–3	4–7	8–15	16–18	19–31		
0	Version	Header Iength	Differentiated Services		Total Length		
32		Identification Flags Fragment Of					
64	Time	to Live	Protocol	Header Checksum			
96			Source	Address			
128	8		Destinati	on Address			
160	Options						
160 or 192+			C)ata			

The utility has user configurable interface to match the structure of IPv4 header

Protocol Quick Select Etherne	et II IPv4 Frame View			
IPv4 Address				
Destination IP Address	192·168·2·1			
Source IP Address	192·168·2·0			
A (TOS Bit 0-2) Precedence	000 - Routine V	Identification	0	A
(TOS Bit 3) Delay	0 - Normal 🗸 🗸	Fragment	May Fragment	~
(TOS Bit 4) Throughput	0 - Normal V		Last Fragment	~
(TOS Bit 5) Reliability	0 - Normal 🗸 🗸	Fragment Offset(x8)	0	* *
(TOS Bit 6) Cost	0 - Normal V	Time to Live	64	* *
	E	Protocol	0xFF - Reserved	~

A: Differentiated Services (DS) was originally defined as the TOS (**Type of Services**) field; this field is now defined by RFC 2474 for Differentiated services (DiffServ) and by RFC 3168 for Explicit Congestion Notification (ECN), matching IPv6.

B: Most common protocols numbers are listed below and the utility has detail configuration of these protocol.

Protocol	0xFF - Reserved	~
	0x01 - ICMP	1
	0x02 - IGMP	
	0x04 - IPv4 in IP	
th	0x06 - TCP	
	0x11 - UDP	
	0x29 - IPv6 in IP	
	0x2E - RSVP	
	0x2F - GRE	
	0x3A - ICMPv6	
	0x59 - OSPFv2	
	0x67 - PIM	
	0x6F - IPX in IP	
	0x70 - VRRP	
	0x7C - ISIS over IP	
	0x89 - MPLS in IP	
v	Cancel 0xFF - Reserved	

1.5.5.2. ARP

Layer 3 Protocol	
O None	O PPPoE Discovery
O IPv4	O PPPoE Session
O IPv6	O GOOSE
ARP	⊖ sv
⊖ TRILL	O LLDP
	O PTPv2
	○ CFM

ARP: Address Resolution Protocol (ARP) is the method for finding a host's link layer (hardware) address when only its Internet Layer (IP) or some other Network Layer address is known. ARP is primarily used to translate IP addresses to Ethernet MAC addresses.

bit offset	0 - 7	8 - 15	16 - 31				
0	Hardware	type (HTYPE)	Protocol type (PTYPE)				
32	Hardware length (HLEN)	Protocol length (PLEN)	Operation (OPER)				
64	Sender hardware address (SHA) (first 32 bits)						
96	Sender hardware add	dress (SHA) (last 16 bits)	Sender protocol address (SPA) (first 16 bits)				
128	Sender protocol add	lress (SPA) (last 16 bits)	Target hardware address (THA) (first 16 bits)				
160		Target hardware addre	ess (THA) (last 32 bits)				
192	Target protocol address (TPA)						

The utility has user configurable interface to match the structure of ARP header.

				2007-00-00-00-00-00-00-00-00-00-00-00-00-
Hardware Type	1 - Ethernet	~	Sender Hardware Address	00 - 00 - 00 - 00 - 00 - 00
Protocol Type (Hex)	08:00		Sender Protocol Address	0 · 0 · 0 · 0
Hardware Address Length	6	*	Target Hardware Address	00 - 00 - 00 - 00 - 00 - 00
Protocol Address Length	4	*	Target Protocol Address	0 · 0 · 0 · 0

1.5.5.3. Pause

Layer 3 Protocol	
O None	O PPPoE Discovery
O IPv4	O PPPoE Session
O IPv6	◯ GOOSE
O ARP	⊖ sv
○ TRILL	
	O PTPv2
	O CFM
O BPDU	○ FIP
MAC Control	○ ECP
○ SLOW	O LOOP

Pause: PAUSE is a flow control mechanism on full duplex Ethernet link segments defined by IEEE 802.3x and uses MAC Control frames to carry the PAUSE commands.

TIGITIC VIC
▲ ▼

The Destination Address of Pause frame is 01:80:C2:00:00:01. This particular address has been reserved for PAUSE frames.

The MAC Control opcode for PAUSE is 00:01 (0X0001 in hexadecimal)

A PAUSE frame includes the period of pause time being requested, in the form of two byte unsigned integer (0 through 65535). This number is the requested duration of the pause.

LINEEYE 1.5.6. Layer 4 Header

In the payload of frame, if IPv4 is selected

Layer 3 Protoco	bl
O None	O PPPoE Discovery
● IPv4	O PPPoE Session
O IPv6	⊖ GOOSE
O ARP	⊖ sv

Then Layer 4 header as below is configurable

Layer 4 Proto	col
None	
О ТСР	○ IPX in IP
O UDP	
	O ISIS over IP
	O MPLS in IP
O ICMPv6	
○ IPv4 in IP	
○ IPv6 in IP	
O RSVP	
O OSPFv2	

1.5.6.1. TCP/IP

The Transmission Control Protocol (TCP) is one of the core protocols of the Internet Protocol Suite. The structure of TCP segment is illustrated below. The TCP header starts after bit 160 of the IP header.

		· · · · · ·				тср	Head	er			
Bit offset	0–3 4–7 8–15						16–31				
0	Source port Destination port								Destination port		
32	Sequence number										
64	Acknowledgment number										
96	Data offset	Reserved	CWR	ECE	URG	ACK	PSH	RST	SYN	FIN	Window Size
128	Checksum Urgent pointer								Urgent pointer		
160	Options (optional)										
160/192+	Data										

Flags (8 bits) (called Control bits) – contains 8 1-bit flags

- CWR (1 bit) Congestion Window Reduced (CWR) flag is set by the sending host to indicate that it received a TCP segment with the ECE flag set (added to header by RFC 3168).
- ECE (ECN-Echo) (1 bit) indicate that the TCP peer is ECN capable during 3-way handshake (added to header by RFC 3168).
- URG (1 bit) indicates that the URGent pointer field is significant
- ACK (1 bit) indicates that the ACKnowledgment field is significant
- PSH (1 bit) Push function
- RST (1 bit) Reset the connection
- SYN (1 bit) Synchronize sequence numbers
- FIN (1 bit) No more data from sender

The utility has user configurable interface to match the structure of TCP segment

			Fhas
Source Port	8	* *	
	0		Urgent Pointer Valid
Destination Port		-	Acknowledge Valid
Sequence Number	0	-	Push Function
A cknowledgement Number	0		
Acknowledgement Number			Reset Connection
Header Length (x4)	5	-	Synchronize Sequence
Window	2161	•	No More Data From Sender
Urgent Pointer	1	•	
Checksum	Correct	~	

1.5.6.2. UDP/IP

Layer 4 Prot	tocol
O None	
О ТСР	◯ IPX in IP
UDP	
	○ ISIS over IP
	O MPLS in IP
O ICMPv6	
0	

The User Datagram Protocol (UDP) is one of the core members of the Internet Protocol Suite, the set of network protocols used for the Internet.

The structure of UDP segment is illustrated below. The UDP segment starts after bit 160 of the IP header

bits	0 - 15	16 - 31
0	Source Port	Destination Port
32	Length	Checksum
64	C	lata

The utility has user configurable interface to match the structure of UDP segment

Protocol Quick Select	Ethernet II	IPv4	UDP	Frame V
UDP Parameters				
Source Port	8		* *	
Destination Port	9		A V	
Checksum	Null		~	
Payload Type	None		~	
Payload Type	None		~	

Layer 4 Prot	ocol
O None	
О ТСР	O IPX in IP
● ICMP	O ISIS over IP
	O MPLS in IP
O ICMPv6	
O TPv4 in TP	1

The Internet Control Message Protocol (ICMP) is one of the core protocols of the Internet Protocol Suite. The structure of ICMP segment is illustrated below The ICMP header starts after bit 160 of the IP header

Bits	160-167	168-175	176-183	184-191	
160	60 Type Code		Checksum		
192	92 ID		Sequ	ence	

The utility has user configurable interface to match the structure of ICMP segment

Protocol Quick Select	Ethernet II	IPv4	ICMP Fr
ICMP Parameters			
Туре	0x00 - Echo I	Reply	\sim
Code	0		•
ID	0		▲ ▼
Sequence	0		•

1.5.6.4. IGMP/IP

Layer 4 Proto	col
O None	
О ТСР	○ IPX in IP
	○ ISIS over IP
IGMP	O MPLS in IP
O ICMPv6	
O IPv4 in IP	

The Internet Group Management Protocol (IGMP) is a communications protocol used to manage the membership of Internet Protocol multicast groups.

The structure of IGMP segment is illustrated below. The IGMP header starts after bit 160 of the IP header

+	Bits 0 - 7	8 - 15	16 - 23	24 - 31	
0	Туре	Max Resp Time	Checksum		
32		Group Add	dress		

The utility has user configurable interface to match the structure of IGMP segment there are three versions of IGMP

Protocol Quick Select	Ethernet II	IPv4	IGMP	Frame View	
IGMP Parameters					
Version		2			~
Туре		0x11	- Group	Membership Quer	y v
Group Address		0 .	0 · () · 0	
Max Response Tim	e(x0.1s)	8			

1.5.7. Frame View

The figure shows the structure of packet/frame that will be generated. The figure is changeable, depending on the configuration of the packet/frame.

2. Operation of LE-590TX with LE590-SG

This chapter tells you how to use this device to test the DUT

2.1. Hardware connection

To use this device, user can connect it to DUT as the illustration below.

Then LE-590TX can generate test stream to DUT and also receive data stream from DUT for analysis.

2.2. Operation of LE590-SG

2.2.1. Generate Test Streams to DUT

To generate the test streams, user should configure the pattern and contents of the test streams

Click 🔲 Stre	am Genera	ation ,System	shows					
Port A : Stream	Generation ×	2						-
Port A : St	ream Ge	neration						
🗃 🛃 🗟 🖏	🖳 🗷 🛲 i	📩 Apply						
Tx Rate Control	Auto Gener	ate Tx Rate 🗸 🗸 🗸	Stream Transmit	Mode Continuous 🗸				
Total Line Rate(Mbps) 10000).00 🗘 Total	Utilization(%)	0.0000 📫 Total Pac	ket Rate(PPS) 148	80952 🗘		
Channel	a cita		Frank Dealersh		Rate		T	< Frame
Stream	I# Select	Length(W/o CRC)	Frame Payload	Line Rate(Mbps)	Utilization(%)	Packet Rate(PPS)	IFG (bit time)	IBG
1	\checkmark	60	All 0	10000.00	100.0000	14880952	96	

Select the streams volume user want to generate.

User can create many streams; however, only tick streams that user want to send

Stream #	Select	Length(w/o CRC)
1		60
2		60

Double click value in the grid of length, then user can change the value. Select Random, Short-Long, IMIX or input the length directly.

Select the unit and input the value of the parameter that the packets will be generated.

	Rate						
Line Rate(Mbps)	Utilization(%)	Packet Rate(PPS)					
10000.00	100.0000	14880952					
10000.00	100.0000	14880952					

Line Rate: Mbytes per second in transmission

Utilization: Percentage of Wirespeed transmission

PPS: Packet per Second. Volume of packets that will be generated per second.

Tick to activate X-TAG if user needs

X-T	AG
Enable	X-ID
\checkmark	0
\checkmark	0

Click Frame Editor to edit the pattern and contents of stream packets. Please refer to 5.5 Frame Date Edit about how to use frame editor

When all procedures are done, the read-only basic information at last few items if shown automatically

Tx Frame/Gap Control						
IFG (bit time)	IBG (bit time)	Frames				
96	96	14880952				
96	96	14880952				

Then click Apply to take effect.

2.2.1.1. Start to generate test streams

When all configurations is done, click Main Counter Panel on Toolbar

Main Counter

🛃 000 🍨 🖼 🗷 🖉 (← →) 🗖

A1 - Port

1	А	В	С	D	^ A Linked	Ports
1	····· Port	Port A	Port B	Total:2 Ports	Transmit	
2	Module	NuDOG-802	NuDOG-802		Transmic	
3	Link	Link Up	Link Up	2	Capture	
4	Speed	Auto 10G Full	Auto 10G Full		Port A	
5	Tx Packets	0	0	0	Transmit	
6	Tx Bytes	0	0	0	Conture	
7	Tx Packet Rate	0	0	0	Capture	
8	TxL2Payload Rate(Mbps)	0.00	0.00	0.00	Port B	
9	Tx Datagram Rate(Mbps)	0.00	0.00	0.00	Transmit	
10	Tx Line Rate(Mbps)	0.00	0.00	0.00	Canture	
11	Tx Utilization(%)	0.00	0.00	0.00	capitare	iteeti 🗠
12	Rx Packets	0	0	0		
13	Rx Bytes	0	0	0		
14	Rx Packet Rate	0	0	0		
15	RxL2 Payload Rate(Mbps)	0.00	0.00	0.00		
16	Rx Datagram Rate(Mbps)	0.00	0.00	0.00		
17	Rx Line Rate(Mbps)	0.00	0.00	0.00		
18	Rx Utilization(%)	0.00	0.00	0.00		
19	🗄 ···· Collision Packets(Sum)	0	0	0		
24	Error Packets(Sum)	0	0	0		
31	Packet Size Statistics (Sum)	0	0	0		
40	🗄 Layer2 Packets(Sum)	0	0	0		
	i IINotwork I awar Dackata (Sum)	0	0	n,	*	

Click control button on operation button to control the packet generation

Expend

sub-item counter to see more details of counters.

2.2.2. Capture Specified Packets

To capture packets/frames of incoming streams to PC via USB port, configure capture criteria is required.

Click Capture Criteria button. The system shows the capture criteria settings

LINEEŸE × Port A : Capture Criteria Port A : Capture Criteria Protocol SDFR Result Capture All Packets Network MAC Protocol 🗌 Ethernet-II 🔲 BPDU Broadcast 🗌 ТСР Multicast ARP None IPv4 UDP Unicast IPv4 IPv4 with Extension Header FTP VLAN IPv6 IPv4 Checksum Error RTP CRC Error IPX OSPF Over Size ICMP RSVP Under 64 Bytes IGMP Pause SNAP X-TAG Packet Length Filter(with CRC) Filter Length(Bytes) = 64 * + Capture Packet Number 4 Apply Cancel

User can configure criteria of Protocol, SDFR according to section 1.3.2.6 Capture Criteria

Then Click 🔚 Capture Buffer , Start capture from the Capture Buffer window

ort A p	ort B	7										
Captured	: 4											
- 24	Delta Tin	ne(µs)		Lengt	h(with CR	C)		DA	SA		VID	
1	0				64		00-22	2-A <mark>2-00-02-00</mark>	00-22-A2-0	0-02-01	n/a	
2	6.72	2			64		00-22	2-A2-00-02-00	00-22-A2-0	0-02-01	n/a	
3	6.72	2			64		00-22	2-A2-00-02-00	00-22-A2-0	0-02-01	n/a	
	6.73	,			64		00-22	2-A2-00-02-00	00-22-A2-0	0-02-01	n/a	
4 ⊇- Ether ⊕- De ⊕- Sc	net II, Src: estination: ource: 00:2	: 00:22: 00:22:a 2:a2:0	:a2:00 a2:00: 0:02:0	:02:0 02:00 1 (00	1 (00:22 (00:22:a2:0)	a2:00: 2:00:0	02:01) 2:00)) <mark>,</mark> Dst: 00:22	:a2:00:02:00 (00:22:a2:00	:02:00)	
4 ⊂ Ether ⊕ De ⊕ Sc ⊕ Ty	net II, Src: estination: ource: 00:2 pe: Unkno	- 00:22: 00:22:a 2:a2:0(wwn (0x	:a2:00 a2:00: 0:02:0 (ffff)	:02:0 02:00 1 (00	1 (00:22 (00:22:a :22:a2:0)	a2:00: 2:00:0):02:01	02:01) 12:00) L)), Dst: 00:22	:a2:00:02:00 (00:22:a2:00	:02:00)	
4 ≪ Ether e De Sc T	net II, Src: stination: urce: 00:2 pe: Unkno	: 00:22: 00:22:a 2:a2:00 wm (0x	:a2:00 a2:00: 0:02:0 .ffff)	:02:0 02:00 1 (00	1 (00:22 (00:22:a :22:a2:00	a2:00: 2:00:0):02:01	02:01) 12:00) L)), Dst: 00:22	:a2:00:02:00 (00:22:a2:00	:02:00)	
4 ← Ether ● Do ● Sc - Ty	net II, Src: stination: urce: 00:2 pe: Unkno	00:22: 00:22:a 2:a2:00 wn (0x	:a2:00: 2:00: 0:02:0 (ffff) 04 (02 (:02:0 02:00 1 (00 5 06 0 00	1 (00:22 (00:22:a :22:a2:00	a2:00: 2:00:0):02:01	02:01) 2:00) L) A OB (2 01 1), Dst: 00:2; 0C 0D 0E 0 FF FF 00 0	:a2:00:02:00 (F 0 ₹ ¢*	00:22:a2:00 ¢ÿÿ	:02:00)	
4 ← Dther ← Dther	000 01 00 01 00 02 00 00	00:22: 00:22:a 2:a2:00 wm (0x 02 0.3 A2 00 00 00	:a2:00 a2:00: 0:02:0 (ffff) 04 0 02 0 00 0	:02:0 02:00 1 (00 5 06 0 00 0 00	1 (00:22 (00:22:a :22:a2:00 07 08 22 A2 00 00	a2:00: 2:00:0):02:01 00 02 00 00 00 00	02:01) (2:00) L) A OB (2 01 F 0 00 (), Dst: 00:22 0C 0D 0E 0 FF FF 00 0 00 00 00 0	:a2:00:02:00 (F 0 ₽"¢"	00:22:a2:00 ¢ÿÿ	:02:00)	

The result of captured frame is shown on Capture Buffer window.

2.2.3. View counter of captured packet and others

User can view the counters of captured packet by SDFR criteria

Click Main Counter Panel on Toolbar

Expand SDFR sub, counter item by clicking "+" of SDFR (SelfDiscoverFilteringRules)(Sum), user can see the packet counts that is captured by SDFR criteria User also can see counters of other events.

SDFR (Self Discover Filtering Rules)(Sum)	0	3,073,103	3,073,103
DA Rule Hit	0	3,073,103	3,073,103
····· SA Rule Hit	0	0	0
····· VID Rule Hit	0	0	0
SIP Address Rule Hit	0	0	0
DIP Address Rule Hit	0	0	0
DPort Rule Hit	0	0	0
SPort Rule Hit	0	0	0

4F., Marufuku Bldg., 39-1, Karahasi, Nishihiragaki-cho, Minami-ku, Kyoto, 601-8468, Japan TEL: 075-693-0161 FAX: 075-693-0163 URL: https://www.lineeye.com Email: info@lineeye.co.jp

M-33590SGE/LE